Hormeesi ja kasviravinteet

Timo Lehto, biokemisti FT

Yleistä
Hormeesilla tarkoitetaan sitä, että ulkoisilla ärsykkeillä (stressitekijöillä) voi lyhytkestoisesti ja pieninä annoksina olla terveydelle hyödyllisiä vaikutuksia, suurina annoksina samaiset ärsykkeet voivat olla jopa myrkyllisiä. Hormeesin varhaisena keksijänä pidetään Paracelcusta (1493-1541), jonka mukaan aineen hyödyllisyys tai haitallisuus on pääasiassa annoskysymys. Toisin sanoen monet lyhytkestoiset ulkoiset tai sisäiset stressitekijät voivat tehostaa vastustuskykyä, lisätä elinvoimaa ja jopa pidentää elämää. Tällaisia stressitekijöitä voivat olla altistuminen nälälle (paasto), fyysiselle rasitukselle (kuntoilu), lämpötilojen vaihteluille (saunominen, avantouinti) tai monille kasvien fytoravinteille (polyfenolit, karotenoidit). Hormeesi on syntynyt evoluution tuloksena, kun ihmisten ja eläinten on ollut pakko sopeutua hyvinkin hankaliin ympäristöolosuhteisiin.

Hormeesin tieteellinen tutkimus
Hormeesihypoteesia tukevat lukuisat soluviljelmillä, eläimillä ja ihmisillä tehdyt tutkimukset, joiden avulla on pyritty selvittämään voidaanko lyhytkestoisilla stressitekijöillä ehkäistä vanhenemista, parantaa vastustuskykyä, vähentää sairauksien riskitekijöitä ja tehostaa kehon omia antioksidanttimekanismeja. Ihmisillä ilmiötä ja sen syy-yhteyksiä on selvitetty pääasiassa erilaisilla väestötutkimuksilla, joissa on tutkittu muun muassa kalorirajoitteisen ruokavalion, fyysisen rasituksen, kylmä/kuuma hoitojen sekä Välimeren ruokavalion ja sen sisältämien ruoka-aineiden terveysvaikutuksia. Vasta vähän yli kymmenen vuoden ajan on tiedetty ne elimistön toimintamekanismit, joiden kautta hormeesivaikutus ihmisellä tapahtuu. Näitä mekanismeja ovat muun muassa erilaiset solujen sisäiset signaalivälitysreitit ja antioksidanttigeenien aktivoituminen

Hormeesi ja kasviperäiset aineet (fytoravinteet)
Monilla kasviperäisillä fytoravinteilla kuten polyfenoleilla ja karotenoidella (värikkäät kasvikset) on lukuisia terveyshyötyjä. Ongelma on kuitenkin se, että suurin osa polyfenoleista imeytyy erittäin heikosti ja elimistö jopa pyrkii pääsemään niistä eroon mahdollisimman nopeasti. Kasvit tuottavat polyfenolisia aineita (sekundaarimetaboliitteja) pääasiassa suojatakseen itseään, jotta eivät tulisi syödyksi. Tutkimusten valossa näyttäkin siltä, että useiden polyfenolisten kasviyhdisteiden kyky aikaansaada lukuisia terveysvaikutuksia perustuu siihen, että ne aktivoivat pieninä määrinä elimistön hormeettisia mekanismeja, joiden seurauksena elimistö alkaa itse valmistaa omia tehokkaita antioksidanttimolekyylejä ja muita suojamolekyylejä.

Useimmat polyfenolit ovat tehokkaita antioksidantteja, mutta ne toimivat merkittävässä määrin antioksidantteina lähinnä suolistossa, missä ne estävät muun muassa rasvahappojen hapettumista. Esimerkiksi runsaasti polyfenoleja ja muita kasvisravinteita sisältävää Välimeren ruokavaliota on tutkittu varsin perusteellisesti. Se vähentää erilaisten sairauksien esiintymistä merkittävästi: muistihäiriöitä (40%), masennusta (32%), sepelvaltimotautia (29%), tyyppi 2 sokeritautia (23%), aivoinfarktia (24%) ja syöpäkuolleisuutta (14%). Tutkittuja terveysvaikutteisia polyfenolipitoisia ruoka-aineita ovat muun muassa: vihreätee, mustikat, oliiviöljy, punaviini, sitrushedelmät, hibiscus-tee, soija, tumma suklaa, kurkumiini ja monet muut mausteet ja yrtit.

Hormeesi ja ravintolisät
Hormeesista johtuen ravintolisien sisältämien polyfenolien ja muiden kasviravinteiden määrä ei välttämättä tarvitse olla kovin suuri terveysvaikutusten aikaansaamiseksi. Jo pienet määrät oikein valittuja fytoravinteita voivat aktivoida kehon omia antioksidantti- ja puolustusmekanismeja. Hyviä hormeettisesti vaikuttavia kasveja ja fytoravinteita ovat kurkuma, valkosipuli, vihreä tee, rosmariini, oliivinlehti, kaalikasvit ja resveratroli (viinirypäleet).

Yhteenveto
Vaikka yleisesti vielä puhutaan kasviravinteiden, kuten polyfenolien suorasta antioksidanttivaikutuksesta, tämä tieto alkaa olla uuden tutkimuksen valossa vanhentunutta, etenkin kun äskettäin on pysytty selvittämään ne mekanismit, joilla kasviravinteiden hormeettiset terveysvaikutukset välittyvät. Jo nyt kasviperäisten ravintolisien suunnittelussa on sovellettu tietoa , että enemmän ei olekaan parempi vaan terveysvaikutukset saadaan aikaiseksi nimenomaan kohtuullisilla määrillä fytoravinteita. Ihanteellisinta tietenkin olisi jos saisimme kasviravinteita riittävästi monipuolisesta ruokavaliosta. Suomessa tämä on kuitenkin vaikeaa lyhyen satokauden vuoksi. Terveyden ja hyvinvoinnin laitoksen (THL) viimeisimmän tutkimuksen (2016) mukaan vain n. 18% suomalaisista syö melko tai hyvin terveellisesti, erityisesti on ongelmana saada riittävästi värikkäitä vihanneksia, hedelmiä, marjoja. Huolellisesti valitut hormeettisesti vaikuttavat tuorepakastekuivatut kasvijauheet ovat erinomainen lisä täydentämään ruokavaliota, ne myös imeytyvät hyvin suolistosta.

 

KIRJALLISUUSVIITTEET

  1. Calabrese E.J., Baldwin L.A. The frequency of U-shaped dose responses in the toxicological literature. Toxicol. Sci. Off. J. Soc. Toxicol. 2001;62:330–338. doi: 10.1093/toxsci/62.2.330.  [PubMed] [CrossRef]
  2. Mattson M.P. Awareness of hormesis will enhance future research in basic and applied neuroscience. Crit. Rev. Toxicol. 2008;38:633–639. doi: 10.1080/10408440802026406. [PMC free article]  [PubMed][CrossRef]
  3. Calabrese V., Cornelius C., Trovato A., Cavallaro M., Mancuso C., Di Rienzo L., Condorelli D., de Lorenzo A., Calabrese E.J. The hormetic role of dietary antioxidants in free radical-related diseases. Curr. Pharm. Des. 2010;16:877–883. doi: 10.2174/138161210790883615.  [PubMed] [CrossRef]
  4. Calabrese E.J. Nitric oxide: biphasic dose responses. Crit. Rev. Toxicol. 2001;31:489–501. doi: 10.1080/20014091111776.  [PubMed] [CrossRef]
  5. Huang S.-S., Zheng R.-L. Biphasic regulation of angiogenesis by reactive oxygen species. Pharm. 2006;61:223–229.  [PubMed]
  6. Day R.M., Suzuki Y.J. Cell proliferation, reactive oxygen and cellular glutathione. Dose-Response. 2006;3:425–442. doi: 10.2203/dose-response.003.03.010. [PMC free article]  [PubMed] [CrossRef]
  7. Calabrese E.J. Hormesis: From mainstream to therapy. J. Cell Commun. Signal. 2014;8:289–291. doi: 10.1007/s12079-014-0255-5. [PMC free article]  [PubMed] [CrossRef]
  8. Gems D., Partridge L. Stress-response hormesis and aging: “that which does not kill us makes us stronger” Cell MeTable. 2008;7:200–203. doi: 10.1016/j.cmet.2008.01.001.  [PubMed] [CrossRef]
  9. Kouda K., Iki M. Beneficial effects of mild stress (hormetic effects): Dietary restriction and health. J. Physiol. Anthropol. 2010;29:127–132. doi: 10.2114/jpa2.29.127.  [PubMed] [CrossRef]
  10. Martins I., Galluzzi L., Kroemer G. Hormesis, Cell death and aging. Aging. 2011;3:821–828.[PMC free article]  [PubMed]
  11. Schumacher B. Transcription-blocking dna damage in aging: a mechanism for hormesis. BioEssays News Rev. Mol. Cell. Dev. Biol. 2009;31:1347–1356. doi: 10.1002/bies.200900107.  [PubMed] [CrossRef]
  12. Halliwell B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol. 2006;141:312–322. doi: 10.1104/pp.106.077073. [PMC free article]  [PubMed] [CrossRef]
  13. Freiberger J., Coulombe K., Suliman H., Carraway M., Piantadosi C. Superoxide dismutase responds to hyperoxia in rat hippocampus. J. Undersea Hyperb. Med. Soc. Inc. 2004;31:227–232.  [PubMed]
  14. Mach W.J., Thimmesch A.R., Pierce J.T., Pierce J.D. Consequences of hyperoxia and the toxicity of oxygen in the lung. Nurs. Res. Pract. 2011;2011:260482. doi: 10.1155/2011/260482. [PMC free article][PubMed] [CrossRef]
  15. Speciale A., Chirafisi J., Saija A., Cimino F. Nutritional antioxidants and adaptive cell responses: an update. Curr. Mol. Med. 2011;11:770–789. doi: 10.2174/156652411798062395.  [PubMed] [CrossRef]
  16. Sertel S., Eichhorn T., Plinkert P.K., Efferth T. Cytotoxicity of Thymus vulgarisessential oil towards human oral cavity squamous cell carcinoma. Anticancer Res. 2011;31:81–87.  [PubMed]
  17. Mattson M.P., Cheng A. Neurohormetic phytochemicals: low-dose toxins that induce adaptive neuronal stress responses. Trends Neurosci. 2006;29:632–639. doi: 10.1016/j.tins.2006.09.001.  [PubMed] [CrossRef]
  18. Hursting S.D., Smith S.M., Lashinger L.M., Harvey A.E., Perkins S.N. Calories and carcinogenesis: lessons learned from 30 years of calorie restriction research. Carcinogenesis. 2010;31:83–89. doi: 10.1093/carcin/bgp280.  [PubMed] [CrossRef]
  19. Longo V.D., Fontana L. Calorie restriction and cancer prevention: metabolic and molecular mechanisms. Trends Pharmacol. Sci. 2010;31:89–98. doi: 10.1016/j.tips.2009.11.004. [PMC free article][PubMed] [CrossRef]
  20. Yamaza H., Komatsu T., Wakita S., Kijogi C., Park S., Hayashi H., Chiba T., Mori R., Furuyama T., Mori N., et al. FoxO1 is involved in the antineoplastic effect of calorie restriction. Aging Cell. 2010;9:372–382. doi: 10.1111/j.1474-9726.2010.00563.x.  [PubMed] [CrossRef]
  21. Menendez J.A., Joven J., Aragonès G., Barrajón-Catalán E., Beltrán-Debón R., Borrás-Linares I., Camps J., Corominas-Faja B., Cufí S., Fernández-Arroyo S., et al. Xenohormetic and anti-aging activity of secoiridoid polyphenols present in extra virgin olive oil: A new family of gerosuppressant agents. Cell Cycle Georget. Tex. 2013;12:555–578. doi: 10.4161/cc.23756. [PMC free article]  [PubMed] [CrossRef]
  22. Schulz T.J., Zarse K., Voigt A., Urban N., Birringer M., Ristow M. Glucose restriction extends caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell MeTable. 2007;6:280–293. doi: 10.1016/j.cmet.2007.08.011.  [PubMed] [CrossRef]
  23. Sohal R.S., Orr W.C. The redox stress hypothesis of aging. Free Radic. Biol. Med. 2012;52:539–555. doi: 10.1016/j.freeradbiomed.2011.10.445. [PMC free article]  [PubMed] [CrossRef]
  24. Ristow M., Schmeisser K. Mitohormesis: Promoting health and lifespan by increased levels of reactive oxygen species (ROS) Dose-Response Publ. Int. Hormesis Soc. 2014;12:288–341. doi: 10.2203/dose-response.13-035.Ristow. [PMC free article]  [PubMed] [CrossRef]
  25. Hetz C., Mollereau B. Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases. Nat. Rev. Neurosci. 2014;15:233–249. doi: 10.1038/nrn3689.  [PubMed] [CrossRef]
  26. Mollereau B., Manié S., Napoletano F. Getting the better of ER stress. J. Cell Commun. Signal. 2014;8:311–321. doi: 10.1007/s12079-014-0251-9. [PMC free article]  [PubMed] [CrossRef]
  27. Maynard K.I. Hormesis pervasiveness and its potential implications for pharmaceutical research and development. Dose-Response Publ. Int. Hormesis Soc. 2011;9:377–386. doi: 10.2203/dose-response.11-026.Maynard. [PMC free article]  [PubMed] [CrossRef]
  28. Mayor A.  The Poison King: The Life and Legend of Mithradates, Rome’s Deadliest Enemy. Princeton University Press; Princeton, NJ, USA: 2010. p. 242.
  29. Henschler D. The origin of hormesis: Historical background and driving forces. Hum. Exp. Toxicol. 2006;25:347–351. doi: 10.1191/0960327106ht642oa.  [PubMed] [CrossRef]
  30. Calabrese V., Cornelius C., Dinkova-Kostova A.T., Calabrese E.J., Mattson M.P. Cellular stress responses, the hormesis paradigm, and vitagenes: Novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal. 2010;13:1763–1811. doi: 10.1089/ars.2009.3074.[PMC free article]  [PubMed] [CrossRef]
  31. Costantini D.  Oxidative Stress and Hormesis in Evolutionary Ecology and Physiology: A Marriage Between Mechanistic and Evolutionary Approaches. 1st ed. Springer Science & Business Media; Berlin, Germany: 2014.
  32. Luch A.  Molecular, Clinical and Environmental Toxicology. Volume 1 Springer Science & Business Media; Berlin, Germany: 2012. Molecular toxicology.
  33. Laughlin R.B., Ng J., Guard H.E. Hormesis: A response to low environmental concentrations of petroleum hydrocarbons. Science. 1981;211:705–707. doi: 10.1126/science.211.4483.705.  [PubMed][CrossRef]
  34. Stebbing A.R. Hormesis—the stimulation of growth by low levels of inhibitors. Sci. Total Environ. 1982;22:213–234. doi: 10.1016/0048-9697(82)90066-3.  [PubMed] [CrossRef]
  35. Sonneborn J.S. Mimetics of hormetic agents: Stress-resistance triggers. Dose-Response Publ. Int. Hormesis Soc. 2010;8:97–121. doi: 10.2203/dose-response.09-025.Sonneborn. [PMC free article][PubMed] [CrossRef]
  36. Calabrese E.J. Hormetic mechanisms. Crit. Rev. Toxicol. 2013;43:580–606. doi: 10.3109/10408444.2013.808172.  [PubMed] [CrossRef]
  37. Calabrese E.J., Dhawan G., Kapoor R., Iavicoli I., Calabrese V. Hormesis: A fundamental concept with widespread biological and biomedical applications. Gerontology. :2015. doi: 10.1159/000441520.[PubMed] [CrossRef]
  38. Mattson M.P. Hormesis defined. Ageing Res. Rev. 2008;7:1–7. doi: 10.1016/j.arr.2007.08.007.[PMC free article]  [PubMed] [CrossRef]
  39. Dattilo S., Mancuso C., Koverech G., Di Mauro P., Ontario M.L., Petralia C.C., Petralia A., Maiolino L., Serra A., Calabrese E.J., et al. Heat shock proteins and hormesis in the diagnosis and treatment of neurodegenerative diseases. Immun. Ageing A. 2015;12:20. doi: 10.1186/s12979-015-0046-8.[PMC free article]  [PubMed] [CrossRef]
  40. Rattan S.I.S. Hormetic modulation of aging and longevity by mild heat stress. Dose-Response. 2006;3:533–546. doi: 10.2203/dose-response.003.04.008. [PMC free article]  [PubMed] [CrossRef]
  41. Richardson R.B. Ionizing radiation and aging: rejuvenating an old idea. Aging. 2009;1:887–902.[PMC free article]  [PubMed]
  42. Heber D. Vegetables, fruits and phytoestrogens in the prevention of diseases. J. Postgrad. Med. 2004;50:145–149.  [PubMed]
  43. Parker J.A., Arango M., Abderrahmane S., Lambert E., Tourette C., Catoire H., Néri C. Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat. Genet. 2005;37:349–350. doi: 10.1038/ng1534.  [PubMed] [CrossRef]
  44. Hu R., Xu C., Shen G., Jain M.R., Khor T.O., Gopalkrishnan A., Lin W., Reddy B., Chan J.Y., Kong A.-N.T. Gene expression profiles induced by cancer chemopreventive isothiocyanate sulforaphane in the liver of C57BL/6J mice and C57BL/6J/Nrf2 (−/−) mice. Cancer Lett. 2006;243:170–192. doi: 10.1016/j.canlet.2005.11.050.  [PubMed] [CrossRef]
  45. Kim H.J., Lee K.W., Lee H.J. Protective effects of piceatannol against beta-amyloid-induced neuronal cell death. Ann. N. Y. Acad. Sci. 2007;1095:473–482. doi: 10.1196/annals.1397.051.  [PubMed] [CrossRef]
  46. Wang C., Zhang D., Li G., Liu J., Tian J., Fu F., Liu K. Neuroprotective effects of safflor yellow b on brain ischemic injury. Exp. Brain Res. 2007;177:533–539. doi: 10.1007/s00221-006-0705-2.  [PubMed][CrossRef]
  47. Nair S., Li W., Kong A.-N.T. Natural dietary anti-cancer chemopreventive compounds: Redox-mediated differential signaling mechanisms in cytoprotection of normal cells versuscytotoxicity in tumor cells. Acta Pharmacol. Sin. 2007;28:459–472. doi: 10.1111/j.1745-7254.2007.00549.x.  [PubMed][CrossRef]
  48. Juge N., Mithen R.F., Traka M. Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cell. Mol. Life Sci. CMLS. 2007;64:1105–1127. doi: 10.1007/s00018-007-6484-5.[PubMed] [CrossRef]
  49. Son T.G., Camandola S., Mattson M.P. Hormetic dietary phytochemicals. Neuromolecular Med. 2008;10:236–246. doi: 10.1007/s12017-008-8037-y. [PMC free article]  [PubMed] [CrossRef]
  50. Park H.G., Han S.I., Oh S.Y., Kang H.S. Cellular responses to mild heat stress. Cell. Mol. Life Sci. CMLS. 2005;62:10–23. doi: 10.1007/s00018-004-4208-7.  [PubMed] [CrossRef]
  51. Le Bourg E., Valenti P., Lucchetta P., Payre F. Effects of mild heat shocks at young age on aging and longevity in Drosophila melanogaster. Biogerontology. 2001;2:155–164. doi: 10.1023/A:1011561107055.[PubMed] [CrossRef]
  52. Blagosklonny M.V. Hormesis does not make sense except in the light of tor-driven aging. Aging. 2011;3:1051–1062. [PMC free article]  [PubMed]
  53. Moskalev A.A., Shaposhnikov M.V. Pharmacological inhibition of phosphoinositide 3 and tor kinases improves survival of Drosophila melanogaster. Rejuvenation Res. 2010;13:246–247. doi: 10.1089/rej.2009.0903.  [PubMed] [CrossRef]
  54. Selye H. The Stress of Life. Hans Selye, M.D. New York, McGraw-Hill Book Company, Inc. 1956. $5.95. J. Bone Jt. Surg. 1957;39:479–479.
  55. Radak Z., Chung H.Y., Koltai E., Taylor A.W., Goto S. Exercise, oxidative stress and hormesis. Ageing Res. Rev. 2008;7:34–42. doi: 10.1016/j.arr.2007.04.004.  [PubMed] [CrossRef]
  56. Gomez-Cabrera M.-C., Martínez A., Santangelo G., Pallardó F.V., Sastre J., Viña J. Oxidative stress in marathon runners: interest of antioxidant supplementation. Br. J. Nutr. 2006;96:S31–S33. doi: 10.1079/BJN20061696.  [PubMed] [CrossRef]
  57. Mahoney D.J., Parise G., Melov S., Safdar A., Tarnopolsky M.A. Analysis of global mrna expression in human skeletal muscle during recovery from endurance exercise. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2005;19:1498–1500. doi: 10.1096/fj.04-3149fje.  [PubMed] [CrossRef]
  58. Mancuso C., Pani G., Calabrese V. Bilirubin: an endogenous scavenger of nitric oxide and reactive nitrogen species. Redox Rep. Commun. Free Radic. Res. 2006;11:207–213. doi: 10.1179/135100006X154978.  [PubMed] [CrossRef]
  59. Cornelius C., Koverech G., Crupi R., di Paola R., Koverech A., Lodato F., Scuto M., Salinaro A.T., Cuzzocrea S., Calabrese E.J., et al. Osteoporosis and alzheimer pathology: Role of cellular stress response and hormetic redox signaling in aging and bone remodeling. Front. Pharmacol. 2014;5:120. doi: 10.3389/fphar.2014.00120. [PMC free article]  [PubMed] [CrossRef]
  60. Mendes C.S., Levet C., Chatelain G., Dourlen P., Fouillet A., Dichtel-Danjoy M.-L., Gambis A., Ryoo H.D., Steller H., Mollereau B. ER stress protects from retinal degeneration. EMBO J. 2009;28:1296–1307. doi: 10.1038/emboj.2009.76. [PMC free article]  [PubMed] [CrossRef]
  61. Mollereau B. Establishing links between endoplasmic reticulum-mediated hormesis and cancer. Mol. Cell. Biol. 2013;33:2372–2374. doi: 10.1128/MCB.00315-13. [PMC free article]  [PubMed] [CrossRef]
  62. Walter P., Ron D. The unfolded protein response: From stress pathway to homeostatic regulation. Science. 2011;334:1081–1086. doi: 10.1126/science.1209038.  [PubMed] [CrossRef]
  63. Fouillet A., Levet C., Virgone A., Robin M., Dourlen P., Rieusset J., Belaidi E., Ovize M., Touret M., Nataf S., et al. ER stress inhibits neuronal death by promoting autophagy. Autophagy. 2012;8:915–926. doi: 10.4161/auto.19716. [PMC free article]  [PubMed] [CrossRef]
  64. Marada S., Stewart D.P., Bodeen W.J., Han Y.-G., Ogden S.K. The unfolded protein response selectively targets active smoothened mutants. Mol. Cell. Biol. 2013;33:2375–2387. doi: 10.1128/MCB.01445-12. [PMC free article]  [PubMed] [CrossRef]
  65. Harman D. Aging: A theory based on free radical and radiation chemistry. J. Gerontol. 1956;11:298–300. doi: 10.1093/geronj/11.3.298.  [PubMed] [CrossRef]
  66. Cornelius C., Perrotta R., Graziano A., Calabrese E.J., Calabrese V. Stress responses, vitagenes and hormesis as critical determinants in aging and longevity: mitochondria as a “chi” Immun. Ageing. 2013;10:15. doi: 10.1186/1742-4933-10-15. [PMC free article]  [PubMed] [CrossRef]
  67. Hosseini M.-J., Shaki F., Ghazi-Khansari M., Pourahmad J. Toxicity of arsenic (iii) on isolated liver mitochondria: a new mechanistic approach. Iran. J. Pharm. Res. IJPR. 2013;12:121–138.[PMC free article]  [PubMed]
  68. Schmeisser S., Schmeisser K., Weimer S., Groth M., Priebe S., Fazius E., Kuhlow D., Pick D., Einax J.W., Guthke R., et al. Mitochondrial hormesis links low-dose arsenite exposure to lifespan extension. Aging Cell. 2013;12:508–517. doi: 10.1111/acel.12076. [PMC free article]  [PubMed] [CrossRef]
  69. Kenyon C., Chang J., Gensch E., Rudner A., Tabtiang R.A.C. C. elegansmutant that lives twice as long as wild type. Nature. 1993;366:461–464. doi: 10.1038/366461a0.  [PubMed] [CrossRef]
  70. Tatar M., Kopelman A., Epstein D., Tu M.P., Yin C.M., Garofalo R.S. A mutant drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science. 2001;292:107–110. doi: 10.1126/science.1057987.  [PubMed] [CrossRef]
  71. Pawlikowska L., Hu D., Huntsman S., Sung A., Chu C., Chen J., Joyner A.H., Schork N.J., Hsueh W.-C., Reiner A.P., et al. Association of common genetic variation in the insulin/IGF1 signaling pathway with human longevity. Aging Cell. 2009;8:460–472. doi: 10.1111/j.1474-9726.2009.00493.x. [PMC free article][PubMed] [CrossRef]
  72. Bhakta-Guha D., Saeed M.E.M., Greten H.J., Efferth T. Dis-organizing centrosomal clusters: Specific cancer therapy for a generic spread? Curr. Med. Chem. 2015;22:685–694. doi: 10.2174/0929867322666141212114529.  [PubMed] [CrossRef]
  73. Bray F., Jemal A., Grey N., Ferlay J., Forman D. Global cancer transitions according to the human development index (2008–2030): A population-based study. Lancet Oncol. 2012;13:790–801. doi: 10.1016/S1470-2045(12)70211-5.  [PubMed] [CrossRef]
  74. Pearce O.M.T., Läubli H., Verhagen A., Secrest P., Zhang J., Varki N.M., Crocker P.R., Bui J.D., Varki A. Inverse hormesis of cancer growth mediated by narrow ranges of tumor-directed antibodies. Proc. Natl. Acad. Sci. USA. 2014;111:5998–6003. doi: 10.1073/pnas.1209067111. [PMC free article]  [PubMed][CrossRef]
  75. Suganthi M., Sangeetha G., Gayathri G., Ravi Sankar B. Biphasic dose-dependent effect of lithium chloride on survival of human hormone-dependent breast cancer cells (MCF-7) Biol. Trace Elem. Res. 2012;150:477–486. doi: 10.1007/s12011-012-9510-x.  [PubMed] [CrossRef]
  76. Hine C.M., Mitchell J.R. NRF2 and the phase II response in acute stress resistance induced by dietary restriction. J. Clin. Exp. Pathol. 2012;S4:7329. doi: 10.4172/2161-0681.S4-004. [PMC free article][PubMed] [CrossRef]
  77. Lewis K.N., Mele J., Hayes J.D., Buffenstein R. Nrf2, a guardian of healthspan and gatekeeper of species longevity. Integr. Comp. Biol. 2010;50:829–843. doi: 10.1093/icb/icq034. [PMC free article][PubMed] [CrossRef]
  78. Tong K.I., Kobayashi A., Katsuoka F., Yamamoto M. Two-site substrate recognition model for the keap1-nrf2 system: A hinge and latch mechanism. Biol. Chem. 2006;387:1311–1320. doi: 10.1515/BC.2006.164.  [PubMed] [CrossRef]
  79. Lau A., Villeneuve N.F., Sun Z., Wong P.K., Zhang D.D. Dual roles of Nrf2 in cancer. Pharmacol. Res. Off. J. Ital. Pharmacol. Soc. 2008;58:262–270. doi: 10.1016/j.phrs.2008.09.003. [PMC free article][PubMed] [CrossRef]
  80. Wang X.-J., Sun Z., Villeneuve N.F., Zhang S., Zhao F., Li Y., Chen W., Yi X., Zheng W., Wondrak G.T., et al. Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis. 2008;29:1235–1243. doi: 10.1093/carcin/bgn095. [PMC free article]  [PubMed] [CrossRef]
  81. Pi J., Diwan B.A., Sun Y., Liu J., Qu W., He Y., Styblo M., Waalkes M.P. Arsenic-induced malignant transformation of human keratinocytes: involvement of nrf2. Free Radic. Biol. Med. 2008;45:651–658. doi: 10.1016/j.freeradbiomed.2008.05.020. [PMC free article]  [PubMed] [CrossRef]
  82. Kansanen E., Kuosmanen S.M., Leinonen H., Levonen A.-L. The Keap1-Nrf2 pathway: Mechanisms of activation and dysregulation in cancer. Redox Biol. 2013;1:45–49. doi: 10.1016/j.redox.2012.10.001.[PMC free article]  [PubMed] [CrossRef]
  83. Brigelius-Flohé R., Flohé L. Basic principles and emerging concepts in the redox control of transcription factors. Antioxid. Redox Signal. 2011;15:2335–2381. doi: 10.1089/ars.2010.3534.[PMC free article]  [PubMed] [CrossRef]
  84. Nakano H., Nakajima A., Sakon-Komazawa S., Piao J.-H., Xue X., Okumura K. Reactive oxygen species mediate crosstalk between NF-kappaB and JNK. Cell Death Differ. 2006;13:730–737. doi: 10.1038/sj.cdd.4401830.  [PubMed] [CrossRef]
  85. Oellerich M.F., Potente M. FOXOs and sirtuins in vascular growth, maintenance, and aging. Circ. Res. 2012;110:1238–1251. doi: 10.1161/CIRCRESAHA.111.246488.  [PubMed] [CrossRef]
  86. Bosch-Presegué L., Vaquero A. The dual role of sirtuins in cancer. Genes Cancer. 2011;2:648–662. doi: 10.1177/1947601911417862. [PMC free article]  [PubMed] [CrossRef]
  87. Langley E., Pearson M., Faretta M., Bauer U.-M., Frye R.A., Minucci S., Pelicci P.G., Kouzarides T. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J. 2002;21:2383–2396. doi: 10.1093/emboj/21.10.2383. [PMC free article]  [PubMed] [CrossRef]
  88. Lin Z., Fang D. The roles of SIRT1 in cancer. Genes Cancer. 2013;4:97–104. doi: 10.1177/1947601912475079. [PMC free article]  [PubMed] [CrossRef]
  89. Yang Y., Hou H., Haller E.M., Nicosia S.V., Bai W. Suppression of FOXO1 activity by FHL2 through SIRT1-mediated deacetylation. EMBO J. 2005;24:1021–1032. doi: 10.1038/sj.emboj.7600570.[PMC free article]  [PubMed] [CrossRef]
  90. Doñate F., Parry G.C., Shaked Y., Hensley H., Guan X., Beck I., Tel-Tsur Z., Plunkett M.L., Manuia M., Shaw D.E., et al. Pharmacology of the novel antiangiogenic peptide ATN-161 (Ac-PHSCN-NH2): Observation of a U-shaped dose-response curve in several preclinical models of angiogenesis and tumor growth. Clin. Cancer Res. 2008;14:2137–2144. doi: 10.1158/1078-0432.CCR-07-4530.  [PubMed][CrossRef]
  91. Prabhakar V., Balasubramanian R., Sathe P., Murali Krishna C., Juvekar A. In vitroanticancer activity of monosubstituted chalcone derivatives. Int. J. Tumor Ther. 2014;3:1–9.
  92. Reynolds A.R., Hart I.R., Watson A.R., Welti J.C., Silva R.G., Robinson S.D., da Violante G., Gourlaouen M., Salih M., Jones M.C., et al. Stimulation of tumor growth and angiogenesis by low concentrations of RGD-mimetic integrin inhibitors. Nat. Med. 2009;15:392–400. doi: 10.1038/nm.1941.[PubMed] [CrossRef]
  93. Bachmeier B., Nerlich A.G., Iancu C.M., Cilli M., Schleicher E., Vené R., Dell’Eva R., Jochum M., Albini A., Pfeffer U. The chemopreventive polyphenol curcumin prevents hematogenous breast cancer metastases in immunodeficient mice. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2007;19:137–152. doi: 10.1159/000099202.  [PubMed] [CrossRef]
  94. Bayet-Robert M., Morvan D. Metabolomics reveals metabolic targets and biphasic responses in breast cancer cells treated by curcumin alone and in association with docetaxel. PLoS ONE. 2013;8:e57971. doi: 10.1371/journal.pone.0057971. [PMC free article]  [PubMed] [CrossRef]
  95. Celik I., Sürücü O., Dietz C., Heymach J.V., Force J., Höschele I., Becker C.M., Folkman J., Kisker O. Therapeutic efficacy of endostatin exhibits a biphasic dose-response curve. Cancer Res. 2005;65:11044–11050. doi: 10.1158/0008-5472.CAN-05-2617.  [PubMed] [CrossRef]
  96. Weinreb O., Amit T., Mandel S., Youdim M.B.H. Neuroprotective molecular mechanisms of (−)-epigallocatechin-3-gallate: a reflective outcome of its antioxidant, iron chelating and neuritogenic properties. Genes Nutr. 2009;4:283–296. doi: 10.1007/s12263-009-0143-4. [PMC free article]  [PubMed][CrossRef]
  97. El Touny L.H., Banerjee P.P. Identification of a biphasic role for genistein in the regulation of prostate cancer growth and metastasis. Cancer Res. 2009;69:3695–3703. doi: 10.1158/0008-5472.CAN-08-2958.[PMC free article]  [PubMed] [CrossRef]
  98. Bao Y., Wang W., Zhou Z., Sun C. Benefits and risks of the hormetic effects of dietary isothiocyanates on cancer prevention. PLoS ONE. 2014;9:e114764. doi: 10.1371/journal.pone.0114764. [PMC free article][PubMed] [CrossRef]
  99. Oh S.M., Kim Y.P., Chung K.H. Biphasic effects of kaempferol on the estrogenicity in human breast cancer cells. Arch. Pharm. Res. 2006;29:354–362. doi: 10.1007/BF02968584.  [PubMed] [CrossRef]
  100. Martin-Castillo B., Vazquez-Martin A., Oliveras-Ferraros C., Menendez J.A. Metformin and cancer: doses, mechanisms and the dandelion and hormetic phenomena. Cell Cycle Georget. Tex. 2010;9:1057–1064. doi: 10.4161/cc.9.6.10994.  [PubMed] [CrossRef]
  101. Calabrese E.J., Mattson M.P., Calabrese V. Resveratrol commonly displays hormesis: Occurrence and biomedical significance. Hum. Exp. Toxicol. 2010;29:980–1015. doi: 10.1177/0960327110383625.[PubMed] [CrossRef]
  102. Mukherjee S., Dudley J.I., Das D.K. Dose-dependency of resveratrol in providing health benefits. Dose-Response. 2010;8:478–500. doi: 10.2203/dose-response.09-015.Mukherjee. [PMC free article][PubMed] [CrossRef]
  103. Panigrahy D., Singer S., Shen L.Q., Butterfield C.E., Freedman D.A., Chen E.J., Moses M.A., Kilroy S., Duensing S., Fletcher C., et al. PPARγ ligands inhibit primary tumor growth and metastasis by inhibiting angiogenesis. J. Clin. Invest. 2002;110:923–932. doi: 10.1172/JCI0215634. [PMC free article][PubMed] [CrossRef]
  104. Motegi K., Harada K., Ohe G., Jones S.J., Ellis I.R., Crouch D.H., Schor S.L., Schor A.M. Differential involvement of tgf-beta1 in mediating the motogenic effects of tsp-1 on endothelial cells, fibroblasts and oral tumour cells. Exp. Cell Res. 2008;314:2323–2333. doi: 10.1016/j.yexcr.2008.04.013.[PubMed] [CrossRef]
  105. Mattson M.P., Calabrese E.J.  Hormesis: A Revolution in Biology, Toxicology and Medicine. 1st ed. Springer Science & Business Media; Berlin, Germany: 2009.
  106. Ingram D.K., Zhu M., Mamczarz J., Zou S., Lane M.A., Roth G.S., deCabo R. Calorie restriction mimetics: An emerging research field. Aging Cell. 2006;5:97–108. doi: 10.1111/j.1474-9726.2006.00202.x.  [PubMed] [CrossRef]
  107. Testa G., Biasi F., Poli G., Chiarpotto E. Calorie restriction and dietary restriction mimetics: A strategy for improving healthy aging and longevity. Curr. Pharm. Des. 2014;20:2950–2977. doi: 10.2174/13816128113196660699.  [PubMed] [CrossRef]
  108. Goukassian D.A., Helms E., van Steeg H., van Oostrom C., Bhawan J., Gilchrest B.A. topical DNA oligonucleotide therapy reduces UV-induced mutations and photocarcinogenesis in hairless mice. Proc. Natl. Acad. Sci. USA. 2004;101:3933–3938. doi: 10.1073/pnas.0306389101. [PMC free article]  [PubMed][CrossRef]
  109. Van der Horst A., Tertoolen L.G.J., de Vries-Smits L.M.M., Frye R.A., Medema R.H., Burgering B.M.T. FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1) J. Biol. Chem. 2004;279:28873–28879. doi: 10.1074/jbc.M401138200.  [PubMed] [CrossRef]
  110. Guarente L., Picard F. Calorie restriction—the SIR2 connection. Cell. 2005;120:473–482. doi: 10.1016/j.cell.2005.01.029.  [PubMed] [CrossRef]
  111. Brunmair B., Staniek K., Dörig J., Szöcs Z., Stadlbauer K., Marian V., Gras F., Anderwald C., Nohl H., Waldhäusl W., et al. Activation of PPAR-δ in isolated rat skeletal muscle switches fuel preference from glucose to fatty acids. Diabetologia. 2006;49:2713–2722. doi: 10.1007/s00125-006-0357-6.  [PubMed][CrossRef]
  112. Belmadani A., Kumar S., Schipma M., Collins M.A., Neafsey E.J. Inhibition of amyloid-β-induced neurotoxicity and apoptosis by moderate ethanol preconditioning. Neuroreport. 2004;15:2093–2096. doi: 10.1097/00001756-200409150-00019.  [PubMed] [CrossRef]
  113. Wang X., Wu J., Shidoji Y., Muto Y., Ohishi N., Yagi K., Ikegami S., Shinki T., Udagawa N., Suda T., et al. Effects of geranylgeranoic acid in bone: induction of osteoblast differentiation and inhibition of osteoclast formation. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2002;17:91–100. doi: 10.1359/jbmr.2002.17.1.91.  [PubMed] [CrossRef]
  114. Borlongan C.V., Wang Y., Su T.-P. Delta opioid peptide (D-Ala 2, D-Leu 5) Enkephalin: Linking hibernation and neuroprotection. Front. Biosci. J. Virtual Libr. 2004;9:3392–3398. doi: 10.2741/1490.[PubMed] [CrossRef]
  115. Kwak M.K., Egner P.A., Dolan P.M., Ramos-Gomez M., Groopman J.D., Itoh K., Yamamoto M., Kensler T.W. Role of phase 2 enzyme induction in chemoprotection by dithiolethiones. Mutat. Res. 2001;480–481:305–315. doi: 10.1016/S0027-5107(01)00190-7.  [PubMed] [CrossRef]
  116. Hamilton K.L. Antioxidants and cardioprotection. Med. Sci. Sports Exerc. 2007;39:1544–1553. doi: 10.1249/mss.0b013e3180d099e8.  [PubMed] [CrossRef]
  117. Tiwari P., Kumar A., Balakrishnan S., Kushwaha H.S., Mishra K.P. Radiation-induced micronucleus formation and dna damage in human lymphocytes and their prevention by antioxidant thiols. Mutat. Res. 2009;676:62–68. doi: 10.1016/j.mrgentox.2009.03.007.  [PubMed] [CrossRef]
  118. Aoki H., Iwado E., Eller M.S., Kondo Y., Fujiwara K., Li G.-Z., Hess K.R., Siwak D.R., Sawaya R., Mills G.B., et al. Telomere 3’ overhang-specific DNA oligonucleotides induce autophagy in malignant glioma cells. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2007;21:2918–2930. doi: 10.1096/fj.06-6941com.  [PubMed] [CrossRef]
  119. Vaiserman A.M. Hormesis, adaptive epigenetic reorganization, and implications for human health and longevity. Dose-Response. 2010;8:16–21. doi: 10.2203/dose-response.09-014.Vaiserman.[PMC free article]  [PubMed] [CrossRef]
 

Ylös